3,791 research outputs found

    Approximation of Random Slow Manifolds and Settling of Inertial Particles under Uncertainty

    Get PDF
    A method is provided for approximating random slow manifolds of a class of slow-fast stochastic dynamical systems. Thus approximate, low dimensional, reduced slow systems are obtained analytically in the case of sufficiently large time scale separation. To illustrate this dimension reduction procedure, the impact of random environmental fluctuations on the settling motion of inertial particles in a cellular flow field is examined. It is found that noise delays settling for some particles but enhances settling for others. A deterministic stable manifold is an agent to facilitate this phenomenon. Overall, noise appears to delay the settling in an averaged sense.Comment: 27 pages, 9 figure

    A Morse index theorem for elliptic operators on bounded domains

    Get PDF
    Given a selfadjoint, elliptic operator LL, one would like to know how the spectrum changes as the spatial domain Ω⊂Rd\Omega \subset \mathbb{R}^d is deformed. For a family of domains {Ωt}t∈[a,b]\{\Omega_t\}_{t\in[a,b]} we prove that the Morse index of LL on Ωa\Omega_a differs from the Morse index of LL on Ωb\Omega_b by the Maslov index of a path of Lagrangian subspaces on the boundary of Ω\Omega. This is particularly useful when Ωa\Omega_a is a domain for which the Morse index is known, e.g. a region with very small volume. Then the Maslov index computes the difference of Morse indices for the "original" problem (on Ωb\Omega_b) and the "simplified" problem (on Ωa\Omega_a). This generalizes previous multi-dimensional Morse index theorems that were only available on star-shaped domains or for Dirichlet boundary conditions. We also discuss how one can compute the Maslov index using crossing forms, and present some applications to the spectral theory of Dirichlet and Neumann boundary value problems.Comment: 21 pages; weaker regularity assumptions than in the first versio
    • …
    corecore